MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2019

Calculator-free

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

Question 1(a)

Solution	
If $z = \sqrt{3} - i \implies z^{2} = (\sqrt{3} - i)(\sqrt{3} - i) = 3 - 2\sqrt{3}i - 1 = 2(1 - \sqrt{3}i)$ then $z^{3} = 2(1 - \sqrt{3}i)(\sqrt{3} - i) = 2(\sqrt{3} - 3i - i - \sqrt{3}) = -8i$	
Alternatively we note that $z = re^{i\theta}$ with $r = 2$ and $\theta = -\pi/6$.	
Then $z^3 = r^3 e^{3i\theta} = 2^3 e^{-i\pi/2} = -8i$ as before	
Mathematical behaviours	Marks
• calculates z^2 correctly	1
• calculates z^3 correctly	1+1
(1 mark for showing real part zero and 1 mark for correct value of imaginary part)	

Question 1(b)

(1 mark)

Solution	
Since	
$z^3 = -8i$	
then $z^6 = -64$ which is real and negative. Hence $N = 6$	
Mathematical behaviours	Marks
• calculates z^6 correctly	1

Question 2 (a)

Solution	
Augmented matrix =	
$\begin{bmatrix} 3 & 3 & 3 & 3 \\ 6 & 10 & 10 & 9 \\ -3 & -4 & a & b \end{bmatrix}$	
Mathematical behaviours	Marks
 correctly transfers coefficients of equations to augmented matrix 	1

Question 2 (b)

Solution	
After $r_2 - 2r_1$ and $r_3 + r_1$ the system is reduced to:	
$\begin{bmatrix} 0 & -1 & a+3 & b+3 \end{bmatrix}$	
After $r_2 + 4r_3$ the system is further reduced to	
0 4 4 3	
$\begin{bmatrix} 0 & 0 & 4a+16 & 4b+15 \end{bmatrix}$	
Mathematical behaviours	Marks
 correctly reduces x-components to 0 for rows 2 and 3 (or equivalent) 	2
 correctly reduces y-component to 0 for row 3 (or equivalent) 	1

Question 2 (c)

(3 marks)

Solution	
From the augmented matrix form we deduce that	
(i) for unique solution, $a \neq -4$ (ii) for no solution $a = -4$ and $b \neq -\frac{15}{4}$ (iii) for infinitely many solutions $a = -4$ and $b = -\frac{15}{4}$	
Mathematical behaviours	Marks
 correctly determines value of a for a unique solution 	1
• correctly determines values of <i>a</i> and <i>b</i> that means there is no solution	1
• correctly states the values of <i>a</i> and <i>b</i> for infinitely many solutions	1

(1 mark)

(3 marks)

Solution	
When $a = -4$ and $b = -15/4$ the augmented matrix becomes	
$\begin{bmatrix} 3 & 3 & 3 & & 3 \\ 0 & 4 & 4 & & 3 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$	
Then the second equation gives $y = -z + \frac{3}{4}$	
and first equation then leads to $3x = 3 - 3z + 3z - \frac{9}{4} \Rightarrow x = \frac{1}{4}$	
Hence the general solution of the equations is $x = \frac{1}{4}$, $y = \frac{3}{4} - \lambda$, $z = \lambda$	
Mathematical behaviours	Marks
• determines y in terms of z (or vice-versa)	1
• determines the value of x	1

• states the general solution in terms of a suitable parameter

Question 3

(5 marks)

1

Solution	
If $y = ax + b$ then $x = (y-b)/a$ so that $f^{-1}(x) = \frac{1}{a}x - \frac{b}{a}$ $(a \neq 0)$ For this to be the same as the linear function $f(x) = ax + b$ then comparison of	the
coefficients of x and the constant requires that	
$a = \frac{1}{a} \text{ and } b = -\frac{b}{a}$ Hence $a^2 = 1$ so $a = \pm 1$. If $a = 1$ then $b = -b$ so $b = 0$ If $a = -1$ then b is arbitrary We conclude that either $a = 1$, $b = 0$ or $a = -1$ with b any real number	
Mathematical behaviours	Marks
 derives equation for the inverse compares coefficients to determine the equations for <i>a</i> and <i>b</i> solves for <i>a</i> derives correct solution for <i>a</i> = 1 dervies correct solution for <i>a</i> = -1 	1 1 1 1 1

Question 4

Solution	
Let $z = \alpha + i\beta$ in which case $\overline{z} = \alpha - i\beta$; additionally $ z ^2 = \alpha^2 + \beta^2$	
Now $\frac{1}{z} = \frac{1}{\alpha + i\beta} = \frac{\alpha - i\beta}{(\alpha + i\beta)(\alpha - i\beta)} = \frac{\alpha - i\beta}{\alpha^2 + \beta^2} = \frac{\overline{z}}{ z ^2}$ as required	
Mathematical behaviours	Marks
 writes down an appropriate form for <i>z</i> and hence <i>z</i> derives an expression for <i>z</i> ² in quotient multiplies through by the complex conjugate 	1 1 1
draws a valid conclusion	

(3 marks)

Solution	
$f(x) = \sqrt{9 - 5 - 2x }$ is defined if $9 - 5 - 2x \ge 0$	
If $x \le 2.5$ then $9 - 5 - 2x = 9 - (5 - 2x) = 2x + 4 \ge 0$ if $x \ge -2$	
If $x \ge 2.5$ then $9 - 5 - 2x = 9 - (2x - 5) = 14 - 2x \ge 0$ if $x \le 7$	
So $f(x)$ is defined for $-2 \le x \le 7$	
Mathematical behaviours	Marks
• obtains positivity requirement for $9- 5-2x $	1
 obtains lower and upper limits of the domain 	1+1

Question 5 (b)

Question 6 (a)

(2 marks)

Question 6 (b)

(1 mark)

Solution	
Substituting gives: $4(3) - 3(4) + 6(2) = 12$	
Now LHS = $4(3) - 3(4) + 6(2) = RHS$ so the given point lies on the plane	
Mathematical behaviours	Marks
 correctly substitutes point into equation and confirms value 	1

Question 6 (c)

(2 marks)

Solution	
The vector $\mathbf{q} = 4\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ is perpendicular to Q.	
Since $\mathbf{v} = -2 \mathbf{q}$, it can be concluded that \mathbf{v} is parallel to \mathbf{q}	
As such \mathbf{v} must also be perpendicular to Q .	
Mathematical behaviours	Marks
 recognises that v is a scalar multiple of w 	1
• concludes that \mathbf{v} is parallel to \mathbf{w} and so must also be perpendicular to Q	1

Question 6 (d)

(2 marks)

Solution	
Equation for $\pi_R: 4(x-4) - 3(y-2) + 6(z+3) = 0$ so that $4x - 3y + 6z = -8$	
Mathematical behaviours	Marks
 writes down equation with same coefficients (4, -3, 6) 	1
 shows how to incorporate the fact that the required plane includes the given point 	1

(2 marks)

Question 6 (e)	(2 marks)
Solution	
We can find w by forming the vector product	
$(3,4,2) \times (-8,6,-12) = (-60,20,50)$	
This vector, or any non-zero multiple of it, is the required perpendicular vector.	
Mathematical behaviours	Marks
 makes clear the need to construct a vector product 	1
 computes the vector product correctly 	1

Question 7

(6 marks)

Solution		
First note that $4(1-i) = 4 \times \sqrt{2} \exp\left(-\frac{i\pi}{4}\right) = 2^{5/2} \exp\left(-\frac{i\pi}{4}\right)$		
Then $z^5 = 2^{5/2} \exp\left(i\pi\left[2k - \frac{1}{4}\right]\right) \Rightarrow z = \sqrt{2} \exp\left(\frac{i\pi}{5}\left[2k - \frac{1}{4}\right]\right)$ for $k = 04$ by de Moivre's theorem		
Hence the five roots are $z = \sqrt{2} \exp(i\vartheta)$ where $\vartheta = -\frac{\pi}{20}, \frac{7\pi}{20}, \frac{3\pi}{4}, \frac{23\pi}{20}, \frac{31\pi}{20}$.		
Restricting the argument to the stated domain leaves $\vartheta = -\frac{17\pi}{20}, -\frac{9\pi}{20}, -\frac{\pi}{20}, \frac{7\pi}{20}, \frac{3\pi}{4}$.		
Mathematical behaviours	Marks	
 writes 4(1-i) in a suitable polar form (1 for modulus, 1 for argument) uses de Moivre's theorem appropriately writes down the five required roots (-1 for one mistake) calculates all the arguments so that they lie in the appropriate given range 	1+1 1 2 1	

Question 8

(6 marks)

